Wednesday, January 18, 2017

Last call to replace SHA-1 certificates

(c) iStock 629455088

All major browsers will stop accepting SHA-1 certificates in January/February. An average user will then not be able to distinguish between an invalid certificate (e.g. a certificate from an attacker) and a valid certificate that is using a SHA-1 hash. Effectively, this means that Internet services that still use SHA-1 certificates will become unusable for a large portion of users within the next few weeks.

Specifically, the following dates apply for the major browsers:

Browser vendors have provided ways to still use SHA-1 certificates issued by an internal CA (often used for e.g. an internal services like webmail). However, this is a temporary measure as e.g. Google Chrome will finally remove support for SHA-1 latest in 2019.

The following Censys query demonstrates, that there are still many TLS services world-wide that are affected by this. The query includes all HTTPS services with certificates that are a) not expired, b) that would otherwise be trusted by browsers and c) are signed using the SHA-1 hash algorithm:


Is this necessary?

By disabling the trust for SHA-1 certificates, browser vendors try to prevent a situation similar to what was happening in 2008. Well before 2008, is was commonly known that the MD5 hash algorithm exhibits serious weaknesses. Despite that fact, many certificate authorities issued MD5 certificates and major browsers accepted them. The attacks against MD5 have continuously improved over the years until in 2008, a group of researchers used the weaknesses in MD5 to successfully forge a certificate. Using this certificate, the researchers were able to issue arbitrary certificates for any service on the Internet. We know now that any criminal organisation that also conducted the same research and implemented a similar attack could have successfully intercepted arbitrary TLS connections (e.g. HTTPS) on the Internet.

There are many parallels between the situation then and the situation we now have with SHA-1. The first weaknesses in SHA-1 have been published in 2005. Since then, the attacks on weaknesses in SHA-1 have continuously been improved. In 2015 researchers estimated, that finding a collision in SHA-1 would cost between 75,000 $ and 120,000 $. A collision does not necessarily allow for a practical attack, being able to find a collision severely undermines the security of SHA-1. It is very hard to estimate how long it will take to be able to advance the current attacks to successfully forge a certificate. Moreover, it is possible that organisations outside of the academia already have knowledge of even more advanced attacks against SHA-1.

Therefore, it is necessary for browser vendors to disallow the use of SHA-1 certificates now, before we are in a situation similar to the situation in 2008. Google even goes so far as to warn against "the imminent possibility of attacks that could directly impact the integrity of the Web PKI".

The abandonment of the SHA-1 hash algorithm also affects code signing certificates. Although Windows code signing certificates with SHA-1 signatures can still be obtained, Certificate Authorities would probably be forced to revoke all SHA-1 certificates once a practical attack is known. This especially affects versions of Microsoft Windows that do not support any other hash algorithm for code signing (i.e. legacy Windows versions such as XP SP3, Windows Server 2008 and Windows Vista).


As a countermeasure we recommend to immediately replace affected certificates!

If the certificates are not replaced by 2017-02-14 (for IE11 / Edge at least, or even earlier for other browsers), a large portion of the users will not be able to access the affected services.

To test whether your Internet services are affected by this issue and other issues in the TLS configuration, SSLLabs provides a very useful tool that can be found here.